Errata and remarks on An Introduction to Ergodic Theory

Yuxi Liu*

March 21, 2019

This is a list of errors and remarks on An Introduction to Ergodic Theory (1st edition, 2000) by Peter Walters.

1 Errors

Page 33, line 4: $m\left(T^{-n_{0}} E \Delta T^{-n_{0}} A\right)$
Page 44, line 9: and such that $n \geq N_{\epsilon}$
Page 45, line 9: iff there is a subset
Page 50, Theorem 1.27: G must be assumed nontrivial.
Page 59, line 6: $T_{i}(X \backslash N) \subset X \backslash N$
Page 65, line 12: two-sided
Page 67, Theorem 2.13 (2): The proof uses Theorem 1.26, but Theorem 1.26 requires T to be invertible, and yet T is not assumed invertible in this proof.
This proof needs to assume T invertible.
The theorem works without assuming T invertible, but it needs a different proof. Refer to Ergodic Theory: with a view towards Number Theory by Manfred Einsiedler, Thomas Ward, Theorem 2.36.
Page 70, Lemma 3.3: Discreteness of H is useless. Delete that condition.

2 Remarks

Page 30, Theorem 1.10: A does not need to be assumed surjective. This is relevant later, for Page 50, Theorem 1.28.

[^0]Page 46, Theorem 1.23, $(3) \Rightarrow(2)$: This proof can be made a lot more elementary. $\forall f, g \in L^{2}(m)$, decompose $f=f_{r}+i f_{i}, g=g_{r}+i g_{i}$, with $f_{r}, \cdots, g_{i} \in L_{\mathbb{R}}^{2}(m)$, then

$$
\begin{gathered}
\left(U_{T}^{n} f, g\right)=\left(U_{T}^{n} f_{r}, g_{r}\right)+\left(U_{T}^{n} f_{i}, g_{i}\right)+i\left(U_{T}^{n} f_{i}, g_{r}\right)-i\left(U_{T}^{n} f_{r}, g_{i}\right) \\
(f, 1),(1, g)=\left(f_{r}, 1\right)\left(1, g_{r}\right)+\left(f_{i}, 1\right)\left(1, g_{i}\right)+i\left(f_{i}, 1\right)\left(1, g_{r}\right)-i\left(f_{r}, 1\right)\left(1, g_{i}\right)
\end{gathered}
$$

so if we can prove (2) for $L_{\mathbb{R}}^{2}(m)$, then it's done.
In real inner product space $V, \forall v, w \in V$, as one can check directly by expanding the terms:

$$
\begin{gathered}
(v, w)=\frac{1}{2}((v, v)+(w, w)-(v-w, v-w)) \\
(v, 1)(1, w)=\frac{1}{2}((v, 1)(1, v)+(w, 1)(1, w)-(v-w, 1)(1, v-w))
\end{gathered}
$$

So by decomposing the limit to three smaller limits, we get (2) from (3).
Page 50, Theorem 1.28: In the proof, it says that, if $\gamma, \delta \in \hat{G}$, and one of them is $\not \equiv 0$, then $\left(U_{A}^{n} \gamma, \delta\right)=0$ eventually. But to prove this in the case where $\gamma, \delta \not \equiv 0$, we would have to show that $\lim _{n \rightarrow \infty}\left(U_{A}^{n} \gamma, \delta\right)=0$.
Assume not, then since $U_{A}^{n} \gamma \in \hat{G}$, we must have $U_{A}^{n} \gamma=\delta$ for infinitely many n, thus $\exists k \geq 1, U_{A}^{k} \delta=\delta$.
Now, to proceed, we have to assume that T is surjective, then by Theorem $1.10, \delta \equiv 1$, contradiction.
Page 51, Theorem 1.29: What is \hat{B} ? It's undefined and I can't figure it out.

[^0]: *while a student in Australian National University

